مقاله بهینه‌سازی و معرفی انواع مختلف روش‌های آن


دنلود مقاله و پروژه و پایان نامه دانشجوئی

مقاله بهینه‌سازی و معرفی انواع مختلف روش‌های آن مربوطه  به صورت فایل ورد  word و قابل ویرایش می باشد و دارای ۳۱  صفحه است . بلافاصله بعد از پرداخت و خرید لینک دانلود مقاله بهینه‌سازی و معرفی انواع مختلف روش‌های آن نمایش داده می شود، علاوه بر آن لینک مقاله مربوطه به ایمیل شما نیز ارسال می گردد

 فهرست مطالب

چکیده   ۱
مقدمه   ۲
بررسی روشهای جستجو و بهینهسازی   ۴
۱-۱-۱-    روشهای شمارشی   ۵
۱-۱-۲-    روشهای محاسباتی (جستجوی ریاضی یا- Based Method Calculus)   ۵
۱-۱-۳-   روشهای ابتکاری و فرا ابتکاری (جستجوی تصادفی)   ۷
۲-   مسائل بهینهسازی ترکیبی (Optimization Problems Combinational)   ۸
۲-۱- روش حل مسائل بهینهسازی ترکیبی   ۹
۲-۱- تکرار   ۱۲
۲-۲- روش تولید ستون  (Column Generation)   ۱۲
روش‌های فرا ابتکاری (Metaheuristic) برگرفته از طبیعت   ۱۶
۳-۱- مسأله فروشنده دورهگرد (Travelling Salesman Problem = TSP)   ۱۸
۳-۲- انواع روشهای فرا ابتکاری برگرفته از طبیعت   ۱۹
۳-شبکه‌های عصبی   ۲۲
منابع:   ۲۸

منابع:

۱-  طارمی، رضا؛ بهینه‌سازی شبکه خیابان‌های شهری با استفاده از الگوریتم ژنتیک؛ پایان‌نامه کارشناسی‌ارشد، دانشگاه علم و صنعت ایران ، ۱۳۸۲

۲-  واحد منشوری، علی‌رضا؛ بهینه‌سازی در روش دو بعدی؛ پایان‌نامه کارشناسی‌ارشد، دانشگاه صنعتی شریف ، ۱۳۷۲

۳-  ابوالقاسمی، فرهاد؛ کاربرد الگوریتم سیستم مورچه‌ها در مسأله طراحی شبکه؛ پایان‌نامه کارشناسی ارشد، مهندسی سیستم‌های اقتصادی اجتماعی، مؤسسه عالی پژوهشی در برنامه‌ریزی و توسعه، ۱۳۸۰

 ۴-    Tutorial: Heuristic Optimization ,Ronald L.Rardinm,School of Industrial  Engineering ,Purde University

چکیده

             بهینه‌سازی یک فعالیت مهم و تعیین‌کننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید کنند که بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند. بسیاری از مسائل بهینه‌سازی در مهندسی، طبیعتاً پیچیده‌تر و مشکل‌تر از آن هستند که با روش‌های مرسوم بهینه‌سازی نظیر روش برنامه‌ریزی ریاضی و نظایر آن قابل حل باشند. بهینه‌سازی ترکیبی     (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته         (Discrete Variables) می‌باشد. امروزه بسیاری از مسائل بهینه‌سازی ترکیبی که اغلب از جمله مسائل با درجه غیر چندجمله‌ای (NP-Hard) هستند، به صورت تقریبی با کامپیوترهای موجود قابل حل می‌باشند. از جمله راه‌حل‌های موجود در برخورد با این گونه مسائل، استفاده از الگوریتم‌های تقریبی یا ابتکاری است. این الگوریتم‌ها تضمینی نمی‌دهند که جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار می‌توان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر می‌کند.

  مقدمه

          هدف از بهینه‌سازی یافتن بهترین جواب قابل قبول، با توجه به محدودیت‌ها و نیازهای مسأله است. برای یک مسأله، ممکن است جواب‌های مختلفی موجود باشد که برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف می‌شود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینه‌سازی شبکه‌های حمل و نقل می‌باشد. به هر حال، انتخاب تابع هدف مناسب یکی از مهمترین گام‌های بهینه‌سازی است. گاهی در بهینه‌سازی چند هدف  به طور همزمان مد نظر قرار می‌گیرد؛ این گونه مسائل بهینه‌سازی را که دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی می‌نامند. ساده‌ترین راه در برخورد با این گونه مسائل، تشکیل یک تابع هدف جدید به صورت ترکیب خطی توابع هدف اصلی است که در این ترکیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص می‌شود. هر مسأله بهینه‌سازی دارای تعدادی متغیر مستقل است که آنها را متغیرهای طراحی می‌نامند که با بردار n  بعدی x  نشان داده می‌شوند.

هدف از بهینه‌سازی تعیین متغیرهای طراحی است، به گونه‌ای که تابع هدف کمینه یا بیشینه شود.

مسائل مختلف بهینه‌سازی  به دو دسته زیر تقسیم می‌شود:

          الف) مسائل بهینه‌سازی بی‌محدودیت: در این مسائل هدف، بیشینه یا کمینه کردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی می‌باشد.

          ب) مسائل بهینه‌سازی با محدودیت: بهینه‌سازی در اغلب مسائل کاربردی، با توجه به محدودیت‌هایی صورت می‌گیرد؛ محدودیت‌هایی که در زمینه رفتار و عملکرد یک سیستم می‌باشد و محدودیت‌های رفتاری و محدودیت‌هایی که در فیزیک و هندسه مسأله وجود دارد، محدودیت‌های هندسی یا جانبی نامیده می‌شوند.

          معادلات معرف محدودیت‌ها ممکن است  به صورت مساوی یا نامساوی باشند که در هر مورد، روش بهینه‌سازی متفاوت می‌باشد. به هر حال محدودیت‌ها، ناحیه قابل قبول در طراحی را معین می‌کنند.

به طور کلی مسائل بهینه‌سازی با محدودیت را می‌توان به صورت زیر نشان داد:

Minimize or Maximize : F(X)                                                           (۱-۱ )

Subject to :                         I = 1,2,3,…,p

j = 1,2,3,…,q

k = 1,2,3,…,n

که در آن  X={ بردار طراحی و رابطه‌های (۱-۱) به ترتیب محدودیت‌های نامساوی، مساوی و محدوده قابل قبول برای متغیرهای طراحی می‌باشند.

بررسی روش‌های جستجو و بهینه‌سازی

          پیشرفت کامپیوتر در طی پنجاه سال گذشته باعث توسعه روش‌های بهینه‌سازی شده، به طوری که دستورهای متعددی در طی این دوره تدوین شده است. در این بخش، مروری بر روش‌های مختلف بهینه‌سازی ارائه می‌شود.

۱-۱-۱-    روش‌های شمارشی

          در روش‌های شمارشی (Enumerative Method)، در هر تکرار فقط یک نقطه متعلق به فضای دامنه تابع هدف بررسی می‌شود. این روش‌ها برای پیاده‌سازی، ساده‌تر از روش‌های دیگر می‌باشند؛ اما به محاسبات قابل توجهی نیاز دارند. در این روش‌ها سازوکاری برای کاستن دامنه جستجو وجود ندارد و دامنه فضای جستجو شده با این روش خیلی بزرگ است. برنامه‌ریزی پویا (Dynamic Programming) مثال خوبی از روش‌های شمارشی می‌باشد. این روش کاملاً غیرهوشمند است و به همین دلیل امروزه بندرت به تنهایی مورد استفاده قرار می‌گیرد.

۱-۱-۲-    روش‌های محاسباتی (جستجوی ریاضی یا- Based Method Calculus)

          این روش‌ها از مجموعه شرایط لازم و کافی که در جواب مسأله بهینه‌سازی صدق  می‌کند، استفاده می‌کنند. وجود یا عدم وجود محدودیت‌های بهینه‌سازی در این روش‌ها نقش اساسی دارد. به همین علت، این روش‌ها به دو دسته روش‌های با محدودیت و بی‌محدودیت تقسیم می‌شوند.

          روش‌های بهینه‌سازی بی‌محدودیت با توجه به تعداد متغیرها شامل بهینه‌سازی توابع یک متغیره و چند متغیره می‌باشند.

          روش‌های بهینه‌سازی توابع یک متغیره، به سه دسته روش‌های مرتبه صفر، مرتبه اول و مرتبه دوم تقسیم می‌شوند. روش‌های مرتبه صفر فقط به محاسبه تابع هدف در نقاط مختلف نیاز دارد؛ اما روش‌های مرتبه اول از تابع هدف و مشتق آن و روش‌های مرتبه دوم از تابع هدف و مشتق اول و دوم آن استفاده       می‌کنند. در بهینه‌سازی توابع چند متغیره که کاربرد بسیار زیادی در مسائل مهندسی دارد، کمینه‌سازی یا بیشینه‌سازی یک کمیت با مقدار زیادی متغیر طراحی صورت می‌گیرد.

          یک تقسیم‌بندی، روش‌های بهینه‌سازی با محدودیت را به سه دسته برنامه‌ریزی خطی، روش‌های مستقیم و غیرمستقیم تقسیم می‌کند. مسائل با محدودیت که توابع هدف و محدودیت‌های آنها خطی باشند، جزو مسائل برنامه‌ریزی خطی قرار می‌گیرند. برنامه‌ریزی خطی شاخه‌ای از برنامه‌ریزی ریاضی است و کاربردهای فیزیکی، صنعتی و تجاری بسیاری دارد.

          در روش‌های مستقیم، نقطه بهینه به طور مستقیم جستجو شده و از روش‌های بهینه‌یابی بی‌محدودیت استفاده نمی‌شود. هدف اصلی روش‌های غیرمستقیم استفاده از الگوریتم‌های بهینه‌سازی بی‌محدودیت برای حل عمومی مسائل بهینه‌سازی با محدودیت می‌باشد.

          در اکثر روش‌های محاسباتی بهینه‌یابی، از گرادیان تابع هدف برای هدایت جستجو استفاده می‌شود. اگر مثلاً به علت ناپیوستگی تابع هدف، مشتق آن قابل محاسبه نباشد، این روش‌ها اغلب با مشکل روبه‌رو می‌شوند.

۱-۱-۳-   روش‌های ابتکاری و فرا ابتکاری (جستجوی تصادفی)

 

30,000 ریال – خرید

تمام مقالات و پایان نامه و پروژه ها به صورت فایل دنلودی می باشند و شما به محض پرداخت آنلاین مبلغ همان لحظه قادر به دریافت فایل خواهید بود. این عملیات کاملاً خودکار بوده و توسط سیستم انجام می پذیرد.

 جهت پرداخت مبلغ شما به درگاه پرداخت یکی از بانک ها منتقل خواهید شد، برای پرداخت آنلاین از درگاه بانک این بانک ها، حتماً نیاز نیست که شما شماره کارت همان بانک را داشته باشید و بلکه شما میتوانید از طریق همه کارت های عضو شبکه بانکی، مبلغ  را پرداخت نمایید. 

 

 

مطالب پیشنهادی: برای ثبت نظر خود کلیک کنید ...

براي قرار دادن بنر خود در اين مکان کليک کنيد
به راهنمایی نیاز دارید؟ کلیک کنید


جستجو پیشرفته مقالات و پروژه

سبد خرید

  • سبد خریدتان خالی است.

دسته ها

آخرین بروز رسانی

    دوشنبه, ۷ فروردین , ۱۳۹۶

اولین پایگاه اینترنتی اشتراک و فروش فایلهای دیجیتال ایران
wpdesign Group طراحی و پشتیبانی سایت توسط دیجیتال ایران digitaliran.ir صورت گرفته است
تمامی حقوق برایdjkalaa.irمحفوظ می باشد.