پایان نامه ترمزها


دنلود مقاله و پروژه و پایان نامه دانشجوئی

پایان نامه ترمزها مربوطه  به صورت فایل ورد  word و قابل ویرایش می باشد و دارای ۲۵۲  صفحه است . بلافاصله بعد از پرداخت و خرید لینک دانلود پایان نامه ترمزها نمایش داده می شود، علاوه بر آن لینک مقاله مربوطه به ایمیل شما نیز ارسال می گردد

 فهرست

۱-۱مقدمه و تاریخچه :   ۳
« فصل دوم »   ۱۲
اصول سیستم ترمزهای هیدرولیکی   ۱۲
ترمزهای اتومبیل   ۱۳
۲ـ۱ـ کاربرد و انواع ترمزها:   ۱۳
۲ـ۲ـ ترمزهای مکانیکی   ۱۷
۲-۳ اصول هیدرولیک   ۱۸
۲-۴کاربرد ترمز هیدرولیکی   ۱۹
۲-۵ سیستم ترمز دوبل :   ۲۰
۲-۶ سیلندر اصلی   ۲۱
۲-۷ سیلندر چرخها   ۲۳
۲-۸ عمل خود انرژی زائی(Self- energizing Action)   ۲۳
۲-۹ حرکت بازگشتی Return strock:   ۲۵
۲-۱۰ چراغ اخطار (Warning Light)   ۲۶
۲-۱۲ ترمزهای دیسکی :   ۳۰
۲ـ کالیپر شناور :  Floating caliper)  (   ۳۲
۳ـ کالیپر لغزشی :(sliding caliper)   ۳۲
۲ ـ ۱۳ـ ترمزهای دیسکی که خودشان تنظیم می شوند .   ۳۴
شکل ۲-۲۶   ۳۵
۲ـ۱۴ـ سوپاپ اندازه گیری : (Metering Valve)   ۳۵
۲ـ۱۵ سوپاپ تناسبProportioning Valve   ۳۵
۲ـ۱۶ـ سوپاپ ترکیبی : (Combination Vahve)   ۳۶
شکل ۲-۲۸   ۳۶
۲-۱۷ـ ترمز دستی برای ترمزهای دیسکی عقب:   ۳۷
۲-۱۸ـ سیال ترمز : (Brake Fluid)   ۳۸
۲ـ۱۹ـ خطوط ترمز : (Brake Lines)   ۳۹
۳ـ نوع کمکی : (Assist)   ۴۱
۲ـ۲۱ـ بوستر کمکی ترمز   ۴۲
شکل ۲-۳۳   ۴۳
۲ـ۲۲ ـ تشریح ترمزهای پر قدرت نوع « کامل »   ۴۳
۲ـ۳۲ـ ترمز پر قدرت دو دیافراگمه بندیکس :   ۴۵
۲ـ۲۴ـ ترمز پر قدرت نوع افزاینده :   ۴۶
شکل ۲-۳۸   ۴۶
۲ـ۲۵ـ ترمز پر قدرت نوع کمکی   ۴۶
شکل ۲-۴۰   ۴۸
« فصل سوم »   ۴۹
اصول سیستم ترمز پنوماتیکی   ۴۹
مقدمه   ۵۰
شکل ۳-۱ ترمز بادی با اجزاء آن   ۵۳
۳-۱- اجزای مورد نیاز جهت تولید هوای فشرده :   ۵۴
۱ـ کمپرسور باد :   ۵۴
نوع ساختمان   ۵۴
۳-۲- ملاک انتخاب کمپرسور :   ۵۴
۳-۳- تنظیم کمپرسور :   ۵۵
دیاگرام نمودار تولیدی کمپرسورها   ۵۶
۳ ـ ۴ـ تنظیم از طریق کاهش سرعت :   ۵۷
۳ ـ ۵ ـ خنک کردن کمپرسور :   ۵۸
۳ ـ ۶ ـ بزرگی مخزن هوای فشرده کمپرسور :   ۵۸
طریقه محاسبه حجم مخزن کمپرسور با تنظیم دقیق قطع و وصل   ۵۹
۳ ـ ۷ ـ پخش هوای فشرده به سیلندر پیستون ترمز :   ۶۰
۳ ـ ۹ ـ رطوبت گیری هوای فشرده :   ۶۱
۳-۱۰- فیلترهای هوای ترمز بادی :   ۶۶
۳-۱۱- شیر تنظیم فشار :   ۶۸
۳-۱۲- مقدار عبور جریان برای واحدهای مراقبت :   ۶۹
۳-۱۳- سیلندر پنیوماتیکی :   ۷۰
۳-۱۴- سیلندر یک کاره :   ۷۰
۳-۱۵- ساختمان سیلندر و پیستون :   ۷۲
۳-۱۶- محاسبه نیروهای سیلندر پیستون :   ۷۲
۳-۱۷- نکات عملی :   ۷۳
محاسبه طول کورس پیستون سیلندر پنیوماتیک :   ۷۳
« فصل چهارم »   ۷۸
« سیستم ترمز ضد قفل   ۷۸
ABS   ۷۸
۴ـ۱ـ ویژگی های ABS   ۷۹
۴ـ۲ـ نیروهای دینامیکی در چرخ ترمز شده :   ۸۱
۴ـ۳ـ مفهوم کنترل   ۸۲
توضیح :   ۸۵
۴ـ۴ـ چرخه کنترلABS   ۸۶
۴ـ۴ـ۱ـ سیستم کنترل شده :   ۸۷
۴ـ۴ـ۲ـ متغیرهای کنترل شده   ۸۸
۴-۴-۲-۲- متغیرهای کنترل شده برای چرخهای متحرک(driven- wheel)   ۹۰
۴ـ۵ـ سیکلهای کنترل واقعی   ۹۲
۴ـ۵ـ۲ـ چرخه کنترل ترمزی روی سطح جاده لغزنده ( ضریب نیروی ترمزی پائین)   ۹۴
۴ـ۵ـ۳ـ چرخه کنترل ترمزی با تأخیر در گشتاور انحرافی :   ۹۶
(Closed – Loop Braking Control With Yawing moment build up delay)   ۹۶
۴ـ۵ـ۳ـ۱ـ GMA1 ( سیستم تأخیری در گشتاور انحراف )   ۹۸
۴ـ۵ـ۳ـ۲ـ GMA2   ۹۹
۴ـ۵ـ۴ـ چرخه کنترل برای (ALL wheel Dirven ) AWD   ۱۰۱
۴ـ۵ـ۵ـ سیستمهائی که همه چرخها متحرک هستند (ADW)   ۱۰۲
ب : دومین سیستم :   ۱۰۴
ج : سومین سیستم :   ۱۰۴
۴ـ۶ـ عملکرد ABS   ۱۰۴
۴ـ۶ـ۲ـ تأخیر در گشتاور پیچشی جانبی   ۱۰۷
۴ـ۷ـ مدلهای سیستم ABS   ۱۰۸
۴ـ۷ـ۱ـ مدل ABS 2S   ۱۰۸
۴-۷ـ مدل ABS 5.0   ۱۱۱
۴ـ۸ـ چرخه فرآیند کنترل (Closed – Loop control process)   ۱۱۳
۴ـ۹ـ کارکردهای کنترلی(monitoring Functions)   ۱۱۳
۴ـ۱۰ـ تشخیص عیب:   ۱۱۴
۴ـ۱۱ـ مدل ABS5 . 3   ۱۱۵
۴ـ۱۲ـ مدل سیستم ABS 2E ( بوش)   ۱۱۵
۴ـ۱۳ـ اجزای سیستم ترمز ضد قفل ABS   ۱۱۶
۴ـ۱۳ ـ۱ ـ سنسورهای سرعت چرخ (Wheel speed sensor) :   ۱۱۶
۴ـ۱۳ـ۱ـ۱ـ سنسور سرعت چرخDF2   ۱۲۰
۴ـ۱۳ـ۱ـ۲ـ سنسور سرعت چرخ DF3   ۱۲۰
۴-۱۳-۲ـ واحد کنترل الکترونیکیElectronic control unit   ۱۲۱
۴ـ۱۳ـ۲ـ۱ـ واحد کنترل برای ABS 2S   ۱۲۳
الف ـ مدار ورودی : (Input circuit)   ۱۲۴
ب : کنترل کننده دیجیتالی : (Digital controller)   ۱۲۴
ج : مدارات خروجی : (Output circuits)   ۱۲۶
Driver stage مرحله گرداننده ( راننده ) ( تقویت کننده های خروجی )   ۱۲۷
۴ـ۱۳ـ۲ـ۲ـ واحد کنترل الکترونیکی برای ABS5.0   ۱۲۷
۴-۱۳-۳- تعدیل کننده فشار هیدرولیکی: (Hydraulic pressure moduator)   ۱۲۸
۴ـ۱۳ـ۳ـ۱ـ تعدیل کننده فشار هیدرولیکی برای ABS 2S   ۱۲۹
الف : پمپ چرخشی : (Return ump)   ۱۲۹
ب: انباره یا مخزن : (Accu mulator)   ۱۲۹
ج : شیر سلونوئیدی ۳/۳ :   ۱۳۰
طرح :   ۱۳۰
مراحل کارکرد :   ۱۳۳
الف : مرحله مسدود کردن فشار 🙁 Pressure build up phase)   ۱۳۳
ب : مرحله نگهداری فشار : (pressure – holding phase)   ۱۳۳
ج: مرحله کاهش فشار : (Pressure – reduction phase) :   ۱۳۴
۴ـ۱۳ـ۳ـ۲ـ تعدیل کننده فشار هیدرولیکی برای ABS5.0   ۱۳۴
الف : پمپ برگشت :   ۱۳۵
ب: مخزنها و محفظه های ضربه گیر(accumulators and damper chambers)   ۱۳۵
ج : شیرهای سلونوئیدی ۲/۲ : (Selonid Valve 2/2 )   ۱۳۵
۴ـ۱۳ـ۳ـ۳ـ واحد هیدرولیکی برای ABS / ABD5   ۱۳۶
۴ـ۱۱ـ۲ـ مدارات الکتریکی : ( Electrical Circuits )   ۱۳۷
« فصل پنجم»   ۱۳۸
«طراحی سیستم های ترمز»   ۱۳۸
۵-۱-تحلیل نیروی ترمزهای دیسکی   ۱۳۹
۵-۲-نیروی ترمز و نیروی وارد بر محور   ۱۳۹
۵-۵ ترمزهای کاسه ای (shoe brake)   ۱۴۲
۵-۶-ترمزهای بدون سرو   ۱۴۴
۵-۷-اجزاء مکانیکی ترمز کاسه ای :   ۱۴۵
۵-۸-کفشک ترمز   ۱۴۶
۵-۹- تقسیم بندی ترمزها کاسه ای از لحاظ مکانیزم عمل کننده   ۱۴۶
۵-۱۰-سیستم ترمز سیمپلکس : (simplex brake)   ۱۴۷
۵-۱۱سیستم ترمز دوپلکس :   ۱۴۸
۵-۱۲-سیستم ترمز دوپلکس دوبل   ۱۴۸
۵-۱۳-سیستم ترمز سرو و بدون سرو :   ۱۴۹
۵-۱۴-سیستم سرو دوبل   ۱۴۹
۵-۱۵-محاسبه شتاب ترمز گیری   ۱۵۰
۱ـ در ترمزیک کفشکی :   ۱۵۰
۲ـ ترمز دارای یک کفشک پیشرو و یک کفشک پسرو که بر روی محور لولا شده‌اند   ۱۵۲
۵-۱۶-تحلیل استاتیکی اجزای ترمز کاسه ای :   ۱۶۰
۵-۱۷- ترمزهای لنتی (shoe brakes)   ۱۶۲
۵-۱۸-طرح دستگاه ترمز دو لنتی :   ۱۶۹
مثال عددی محاسبه ترمز ـ دو لنتی(Dounle shoe brake)   ۱۷۲
۵-۱۹- دستگاه ترمز هیدرولیکی مضاعف :   ۱۷۹
۵-۲۰-هواگیری ترمز :   ۱۸۵
۵-۲۱-روغن ترمز   ۱۸۶
۵ـ۲ طراحی سیستم ترمز هیدرولیک پرقدرت ( مجهز به بوستر خلأئی)   ۱۹۰
۲ـالف) مزیت مکانیکی بوستر   ۱۹۲
راه حل دیگر :   ۱۹۴
۳ـ بدست آوردن قطر و خلاء نسبی در بوستر :   ۱۹۹
۵-۲۵ـ طراحی حجم مخزن ذخیره روغن پمپ اصلی   ۲۰۰
۱ـ روغن مورد نیاز کفشک و لقمه های ترمز :   ۲۰۲
۲ـ انبساط خطوط ارتباطی روغن   ۲۰۳
۳ـ انبساط در لوله های لاستیکی   ۲۰۴
۴ـ تلفات پمپ اصلی   ۲۰۴
۵ـ تلفات در اثر تغییر شکل کاسه چرخ و محفظه سیستم ترمز دیسکی :   ۲۰۶
۶ـ تراکم در لنت لقمه ای و کفشک ترمز   ۲۰۶
۷ـ تراکم در سیال ترمز   ۲۰۸
۸ـ تلفات حجم در سوپاپها   ۲۰۹
۹ـ تلفات حجم در سیستم بوستر :   ۲۱۰
۱۰ـ تلفات حجم در اثر وجود بخارات گازی یا هوا در سیستم ترمز :   ۲۱۰
محاسبه کورس پدال   ۲۱۱
۱ـ لقی در لقمه های ترمز :   ۲۱۶
۲ـانبساط در خطوط ارتباطی :   ۲۱۶
۳ـ انبساط در شیلنگهای ترمز :   ۲۱۷
۴ـ پمپ اصلی :   ۲۱۷
۵ـ تغییر شکل در سیستم ترمز دیسکی :   ۲۱۷
۶ـ تراکم در لقمه های ترمز :   ۲۱۸
۷ـ تراکم پذیری در سیال ترمز :   ۲۱۸
« فصل ششم »   ۲۲۱
۷-۱ـ کلیات   ۲۲۲
۲ـ۳ـ چگونگی انجام آزمایش :   ۲۲۶
الف : بر روی یخ (On the ice ) :   ۲۲۶
ب: برروی برف فشرده شده On Hard – pack snow :   ۲۲۷
ج: بر روی مسیری که قبلاً اتومبیل برف روب از آن عبور کرده است .   ۲۲۷
د: مسیری که برف در شرف باریدن می باشد .   ۲۲۸
ه : در آب و هوای گرمتر:   ۲۲۸
و: حرکت در مسیر شن و ماسه ای :   ۲۲۹
ز : عبور از مسیر خیس و مرطوب :   ۲۲۹
ح : توقف در مسیر خشک :   ۲۳۰
جمع بندی :   ۲۳۰
۷-۳ـ نتیجه گیری نهائی :   ۲۳۰
۷ـ۳ـ۱ـ معایب سیستم ترمز معمولی :   ۲۳۱
۷ـ۳ـ۲ـ مزایای سیستم ترمز ضد قفل ABS :   ۲۳۱
۷-۴-مقایسه ترمزهای دیسکی و کاسه‌ای :   ۲۳۳
الف)مزایا :   ۲۳۵
ب) معایب :   ۲۳۶
جدول ۶ – ضرایب ثابت اصطکاک برای اتصالات مواد گوناگون   ۲۳۸
مواد اتصال شونده   ۲۳۸
چرب       تمیز   ۲۳۸
عیب   ۲۳۹
عمل اصلاحی   ۲۳۹
عیب   ۲۴۰
عمل اصلاحی   ۲۴۰
عیب   ۲۴۱
علت احتمالی   ۲۴۱
عمل اصلاحی   ۲۴۱
مراجع :   ۲۴۳

مراجع :

۱-تکنولوژی پیشرفته خودروها ، مولف : مهندس محمدی بوساری .

۲-جزوه ترمزهای ABS مولف مهندسی شاهدایی .

۳-تکنیک اتومبیل ، مهندس ضیائی .

۴٫”Automobile Brakes and Braking systems” . by t.p.new comb and R.T.spurr .

5.Automotive chassise and body by M.c.graw hill chapter 14 .

6.Bosch Driving – safety systems 1998 .

7.Automotive Hand book bosch 1996 .

 ۸٫Brake Design and safety ,SAE 1995 .

9.Shigley “Mechanical Engineering Design” .

۱۰٫SAE Inc “Breke Design and Safety” ۱۹۹۲٫

۱-۱مقدمه و تاریخچه :

امروزه در صنعت اتومبیل سازی حفظ ایمنی سرنشینان خودرو فوق العاده مورد توجه قرار گرفته است . با توجه به اینکه سیستم ترمز مهمترین بخش ایمنی خودرو محسوب می گردد ، در چند ساله اخیر پیشرفتهای زیادی در این زمینه انجام گرفته است . جدیدترین این پیشرفتها پیدایش سیستم ترمز ضد قفل ABS می باشد . در این پروژه هدف آن است که این نسل از ترمزها مورد بررسی قرار گیرد تا ان شاءالله زمینه ای برای ورود این تکنولوژی به ایران فراهم شود . این ترمزها به سبب پیچیدگی مکانیزمشان هنوز مورد توجه طراحان داخلی قرار نگرفته است که یکی از دلایل آن عدم اطلاعات کافی و عدم آشنائی با این سیستم می باشد . امید است این پروژه مقدمه ای برای قدمهای بعدی در راه ساخت و طراحی این تکنولوژی در ایران باشد . (ان شاءالله)

در این پروژه ابتدا تاریخچه ای از پیدایش ترمزها ارائه خواهد شد . در فصل دوم به بررسی سیستم ترمز معمولی شامل کاسه ای و دیسکی و سایر اجزای جانبی آن می پردازیم .

در فصل سوم سیستم ترمز پنوماتیکی مورد بررسی قرار می گیرد و سپس در فصل چهارم و سیستم ترمز ضد قفل ABS و سپس مقایسه ای بین فصول دوم و سوم خواهیم داشت تا برتریها و معایب هرکدام نسبت به یکدیگر مشخص شود و در فصول بعدی مطالب مربوط به طراحی و محاسبه نیروهای لازم آورده خواهد شد . نخست تاریخچه ای از پیدایش ترمزهای اولیه تا کنون بیان می کنیم :

اولین موتور احتراقی در سال ۱۸۸۵ بوسیله بنز ساخته شد . توقف این اتومبیل بوسیله یک لقمه ترمز بر روی محور دنده هرزگرد انجام می گرفت . بعدها که اتومبیل تکمیل شد و سرعت آن افزایش یافت و از لحاظ وزن سنگین تر شد ، ترمزهای مخصوصی برای آن طرح ریزی شد .

تا سال ۱۹۰۰ ترمز دستی شامل ترمز ساده ای که مستقیماً با سطح لاستیکهای توپر اصطکاک پیدا می کرد استفاده می شد. اما از این سال به بعد ترمزی ابداع شد که توسط پدال عمل می کرد و عبارت از یک نوار فلزی بود که در خارج بر روی چرخ دندانه دار محور محرک عقب نصب شده بود و بصورت استوانه ای آن را احاطه می کرد .

در همین سال لنکستر(Lanchester) ترمز و کلاچ را در یک مجموعه مخروطی شکل متشکل کرد و در اولین ماشین ساخت انگلستان بکار گرفت .

در سال ۱۹۰۵ ، انتقال حرکت بوسیله چرخ دنده و محور جای انتقال حرکت توسط زنجیر یا تسمه را گرفت و عمومیت پیدا کرد و بیشتر اتومبیلها با پدالی که انتقال حرکت را به ترمز تأمین می کرد مجهز شده بودند .

در سال ۱۹۱۰ میلادی ترمزهای بیشتر ماشینهای امریکائی روی چرخهای عقب تأثیر می کرد . در این سالها بسیاری از عوامل مربوط به ترمز، مانند اهمیت چسبندگی لاستیک به جاده اثرات چرخ قفل شده و غیره بخوبی شناخته شده بود و این مطلب محقق شده بود که جهت اعمال ترمز صحیح هر چهار چرخ بایستی ترمز شود ، و کوشش و اثر ترمز با نسبتی متناسب بین چرخ جلو و چرخ عقب سهیم باشد . با ترمز شدن چهارچرخ است که بدون خطر لیز خوردن ماشین ، فاصله توقف به نصف تقلیل می یابد . سالها طول کشید تا موضوع ترمز چهارچرخ مورد قبول عموم قرار گرفت . شکل عمده این بود که آرایشی برای ترمز ترتیب داده شود که با تشکیلات و اتصالات فرمان و چرخهای جلو و بطور کلی با تشکیلات سیستم فرمان و هدایت ماشین تداخل پیدا نکند .

در فاصله دو جنگ جهانی اول و دوم ، احتیاج به ترمز تا حدودی بیشتر احساس شد . چون سرعت ماشین ها رو به افزایش رفت همچنین بر تراکم ترافیک نیز افزوده شد .

نظر به اینکه رانندگان به ترمز قوی احتیاج داشتند و از طرفی ترمز قوی در چرخهای عقب ، موجب سرخوردن ماشین می شد ، فشار زیادی به طراحان ترمز وارد می آمد تا ترمز چرخهای جلو را تکمیل کنند . در نتیجه ، بعد از گذشت ده سال از جنگ اول ، استعمال ترمز در هر چهار چرخ ، عمومیت پیدا کرد . ظهور ترمز در چرخهای جلو ، پس از جنگ ابتدا در خودروهای بزرگ و گرانقیمت مانند هیسپانو ـ سوئیزا و هاچیکس(Hotchikss) و سپس درخودروهای سبک و ارزان قیمت صورت پذیرفت . ساده ترین راه برای اعمال ترمز جلو استفاده از سیستم هیدرولیک بود . ولی در طی سالیان متمادی اکثریت خودروها از سیستم مکانیکی استفاده می کردند تا اینکه مزایای هیدرولیک برای همه روشن شد . چرخهای اتومبیل بدون احتیاج به دنده‌ای پیچیده ترمز می شدند . جبران سائیدگی لنتها بطور خودکار صورت می گرفت و تلفات اصطکاک بمراتب کمتر از سیستم مکانیکی بود .

در سال ۱۹۱۱ ، اتومبیلی با ترمزهای هیدرولیکی برای چهارچرخ به نمایش گذاشته شد . اما در آن تردیدهائی وجود داشت بنابراین بصورت ابداعی باقی ماند . چندی بعد شخصی بنام M-Loughead سیستمی عملی اختراع کرد که در سال ۱۹۱۷ به ثبت رسید .

در کشور انگلستان در سال ۱۹۲۴ ، ابتدا ترمز لاک هید هیدرولیک در ماشینهای «بین»(Bean) بکار برده شد .

در سال ۱۹۲۴ ترمزهای مکانیکی از چرخهای جلو برداشته شد و در ۱۹۲۵ نیز از چرخهای عقب حذف شد و جای خود را به ترمزهای هیدرولیک واگذار کرد.

نظر به اینکه برای ترمزهای ماشینهای سنگین به نیروی زیادی احتیاج بود بنابراین سرووهای مختلف طراحی شدند . در سال ۱۹۲۴ ، دواندر (Dewandre) دستگاه سرووئی ساخت که برای بکار انداختن آن از خاصیت خلأ استفاده شده بود .

دهه ۱۹۳۰ ، ظهور متخصصینی را به خود دید که سردسته آنها در ساخت ترمزهای مکانیکی ، بندیکس و گیرلینگ بودند ، و در ساخت ترمزهای هیدرولیک ، لاک هید بود .

در طول دهه ۱۹۳۰ ، بتدریج هیدرولیک جای ترمز مکانیکی را گرفت ظرف مدت ده سال تلاش برای توسعه ترمز هیدرولیک شدت یافت بخصوص هنگامی که تعلیقات مستقلی برای ترمز جلو بکار رفت . در سال ۱۹۳۵ ، بعضی از مدلهای ساخت انگلستان دارای دو سیلندر اصلی پشت سرهم شد . در این سیستم ، یک قسمت از سیلندر اصلی ، ترمزهای جلو را بکار می انداخت و قسمت دیگر از طریق خط کاملاً مجزای دیگری ، ترمزهای عقب را .

بعد از سال ۱۹۳۰ ، چندین سال ، مکانیسم ترمز بدون تغییر باقی ماند و عملاً تمام ترمزها از نوع پرویا بندیکس ـ پرو بودند .

در سال ۱۹۴۸ ، گیرلینگ اولین سیستم ترمز هیدرولیک و ترمزهای اتومبیل را ارائه کرد و چند سالی هم تولید ترمزهای هیدرواستاتیک ادامه یافت . در این نوع ترمز ، فاصله ای بین کاسه و لنت وجود داشت و بوسیلة فنرهائی آنها را در حد تماس نگاه می داشتند تا از تکان خوردن و صدای آن جلوگیری بعمل آید .

در اواسط دهه ۱۹۵۰ ، در وضع عمومی ترمزها تغییر عظیمی صورت گرفت . زیرا در این هنگام آغاز جایگزینی ترمز دیسکی بجای ترمز استوانه ای بود .

در این سال در آمریکا ، شرکت کرایسلر ترمزهای دیسکی « خود نیروزا » و « خود تنظیم ساز » و« نوع صفحه ای » را در ماشینهای نوع « کراون امپریال »(Crown Imperial) خود نصب کرد که بعنوان یک ترمز اضافی و اختیاری بکار می رفت . در انگلستان نیز در سال ۱۹۲۵ ترمز دیسکی دانلوپ در ماشینهای جگوار کورسی بکار رفت . امروزه تمام اتومبیلهای انگلیسی ، به استثنای ماشینهای سبک که حداقل در چرخهای جلو ترمز دیسکی دارند ، در تمام چرخها ، از ترمز دیسکی استفاده می کنند.

از تاریخی که ترمز کاسه ای ساخته شد تا مدت سی سال ، یا زمانی در همین حدود ، رسم براین بود که کاسه ترمز را از فولاد پرس شده می ساختند . در آن زمان ، سرعت اتومبیل کم بود و مشکلات حرارتی وجود نداشت ولی هنگامی که سرعت ماشینها زیاد شد ، حرارت زیادی در کاسه پدید می آمد و باعث می شد فولاد مقداری از سختی و سفتی خود را از دست بدهد و کاسه معیوب شود . بدین منظور از چدن استفاده شد .

مواد اصطکاک زا در بدو امر ، برای ایجاد اصطکاک در ترمزهای اتومبیل ، از قطعه ای چوب یا فلز و یا چرم و یا پارچه استفاده می شد که با دوره چرخ یا با لاستیک اصطکاک حاصل می کرد .

در سال ۱۹۰۱ ، هربرت فرود(Herbert Frood) مواد اصطکاک زائی را به ثبت رساند . این مواد با فولاد اصطکاک داشتند یا با لاستیک . در حالت اول از اشباع الیاف نخی با لاستیک تهیه می شدند و در حالت دوم از اشباع الیاف نخی با مواد مومی . در سال ۱۹۱۴ ، مصرف لنت ترمز فرود ، توسعه پیدا کرد . در سال ۱۹۳۰ ، فرود به صمغهای تعدیل کننده حرارت توجه کرد و سپس ، انتهای قالب ریزی شده را بجای لنتهای بافته شده بکار برد .

بدین ترتیب تاریخ ترمز اتومبیل سیر منظمی را طی کرد تا به شکل امروزی در آمد.

Anti – lock Braking system روی خودروهای سنگین مجهز به ترمز بادی بصورت انتخابی نصب می شود این سیستم در سال ۱۹۵۲ در شرکت DUNLOP با نصب Maxaret روی هواپیما آغاز شد در سال ۱۹۷۲ در انگلستان برای اولین بار jensen intercepter و بعد شرکتهای آمریکایی ford برای خودرو سال ۶۹ بصورت تک کاناله و بوستردار طراحی کردند . سیستمخلایی ۳ کاناله روی چهار چرخ در سال ۱۹۷۱ با همکاری دوشرکت Bendix و Chrysler ساخته شد . اولین خودرو چهارچرخ ABS دار از ۱۹۷۶ تا ۱۹۸۲ از روی برخی خودروهای جنرال موتور مجاز شدند اشکال سیستم های الکترونیکی قابلیت اعتماد کم آنها بود . که با توسعه منابع انرژی فشار بالا وبکارگیری اکومولاتور مطرح شد. بنابراین مدار کنترل الکترونیکی بر اساس پاسخ سنسوری کار می کند و نسبت به منابع خلایی محدودیت کاربرد دارد و قیمت آن بالا است . بعد از آن اداره ملی ایمنی بزرگراهها و حمل و نقل آمریکا NHTSA  روی خودرو سنگین ABS بادی را نصب کرد که اشکالاتی بوجود می آمد . سنسورها ۴۱%، سوپایها ۱۶%  ، کامپیوتر ۸% ، نصب غلط ۳% ، اتصالات الکترونیکی ۱% و تداخل امواج الکترومغناطیس ۵۰% .

در نیمه اول دهه ۷۰ در اروپا سیستم های الکترونیکی ترمزها دیجیتالی شدند این تغییر که نتیجه تبدیل تحلیلهای آنالوگ به میکروپروسسور و مدارهای مجتمع IC (Integrated Circuits) بود . که در سال ۱۹۷۹ روی سواری مرسدس با سیستم ترمز بوش به کار رفت که روی چهار چرخ به همراه بوستر خلایی یا هیدرولیکی بود .

BMW و ژاپنیها این راه را ادامه دادند ABS بوش در ۱۹۸۶ روی کادیلاک نصب شد. و روی فورد در آلمان سال ۱۹۸۵ بکار رفت در ۱۹۹۱ سازندگان اتومبیل این سیستم را روی یک سوم خودروها پیشنهاد کردند . تویوتا ۴۰% ، نیسان ۴۴% ، هندا۵۰%، مزدا۲۵%، میتسوبیشی ۲۷% کرایسلر ۱۸% ، GM 33% ، فورد ۱۳% تا سال ۱۹۹۲ ۱۵ درصد خودروها مجهز به ABS بودند . دلیل عدم استفاده ABS روی خودروهای کوچک قیمت بالا ۸۰۰ تا ۱۳۰۰ دلار بود . GM، ABS موثر (ABS-VI) رابا قیمت ۳۵۰ دلاری روی ماشینهای ۹۱ خود بکار برد . نرخ تصادفات ماشینهای سنگین پائین آمد و آمار تصادفات بامرسدس ۶% تا ۱۰% کاهش یافت .

این سیستم ابتدا توسط روبرت بوش اختصار (Unti – Blockier Schutz)ABS را پیدا کرد که با اندازه گیری سرعت زاویه ای چرخ ، سایر پارامترهای دینامیکی را محاسبه کرده و باشروط منطقی لغزش تایر ، قفل شدن چرخها در اثر ترمزگیری را پیش بینی می کند . واحد کنترل الکترونیکی با فرستادن سیگنالی به تعدیل گر هیدرولیکی (قلب سیستم) فرمان کاهش فشار ترمزی را صادر می کند . این روند ادامه می یابد تا باز فرمان افزایش فشار جهت ترمزگیری صادر شود . این کار چند بار تکرار می شود . مغز سیستم واحد کنترل الکترونیکی است . این قسمت فرمان دریافتی از سنسور چرخها یا دیفرانسیل (برای سیستم کنترل دوکاناله) را دریافت کرده و پس از پردازش ، دستور مناسب را صادر می کند . موتور الکتریکی مرتبط با واحد کنترل با فرمان گیری از این قسمت ، تعدیل فشار ترمزی را انجام می دهد مدل تایر نیز مطرح شده است . ماهیت غیرخطی سیستم به علت ترم هایی مثل حاصلضرب سرعت خطی خودرو در لغزش تایر ، ممان اینرسی انتقال یافته به چرخها و ضریب اصطکاک جاده ای می باشد.

روش مدلغزشی Sliding Mode که از روشهای مقاوم در سیستم های ساختار متغیر است به عنوان منطق کنترل غیرخطی سیستم قرار گرفت . انگیزه اصلی این تحقیق از آنجا شروع شد که ضعف روش خطی و خطای حاصله نظیر حساسیت پارامتری وپیشرفت نرم افزاری مشهود شد . در سال ۱۹۸۱ روشهای دامنه فرکانسی همچون توابع توصیفی Describing Function با پسخورانده های خطی روی ABS ارزیابی شد . کار Fling ادامه یافت ودر سال ۱۹۹۰ روشی موسوم به مرز مزدوج Conjuhate Boundary  توسط Yeh پیشنهاد شد . مدل تایر (مشخصه ضریب اصطکاک طولی بالغزش تایر) اعمال در دینامیک غیرخطی سیستم ، همان مدل ایده‌آل یا قطه ای خطی بود . در این کار مفاهیم جدید تعادل گشتاور ترمزی و مرزهای مزدوج جهت تحلیل ناپایداری سیکلهای حدی بکار رفت . روش غیرخطی مد لغزشی برای اولین بار در ۱۹۹۴ مطرح شد . خطاهای ناشی از مدلساطی و اختشاشات خارجی مثل سطح ناصاف جاده، تحریک های سیستم تعلیق و فرمان ، استفاده از روش غیرخطی مقاوم را مورد توجه قرار دارد در سال ۱۹۹۵ بهروز شریفی روش مدلغزشی بهینه را برای کنترل ABS بکار برد . Drakunov از روسیه نیروهای اصطکاکی جاده ای را به عنوان نیروهای خارجی سیستم در نظر گرفت و سیستم را تحلیل کرد . روش غیرخطی به دلیل پیچیدگی حجم پروسس نرم افزاری بسیاری رامی طلبند و روش مد لغزشی به علت شرطی بودن نیاز به تحلیل مساله در فاصله زمانی کوتاه دارد .

 

ترمزهای اتومبیل

این فصل کاربرد و عملکرد انواع ترمزهای مورد استفاده در اتومبیل را تشریح می کند . از آنجائی که اکثریت ترمزهای امروزی بوسیلة هیدرولیک بکار می افتد ، در این فصل کاربرد ترمزهای هیدرولیکی و ساختمان آنها شرح داده شده است . دو نوع ترمز هیدرولیکی وجود دارد : دیسکی و کاسه ای . در نوع کاسه ای ، کفشکهای ترمز به سطح داخلی کاسه ترمز می چسبند و در ترمز نوع دیسکی ، لقمه های مسطح ترمز یا کفشکها به دیسک مسطح می چسبند .

 

۲ـ۱ـ کاربرد و انواع ترمزها:

ترمزها حرکت اتومبیل را کند و یا متوقف می سازند . ترمزها ممکن است توسط سیستمهای مکانیکی ، هیدرولیکی ، فشار هوا و یا وسائل الکتریکی بکار انداخته شوند. وقتی که راننده پدال ترمز را فشار می دهد ، کفشکهای ترمز یا لقمه ها بطرف کاسه ترمز یا دیسک ترمز حرکت می کنند .

اصطکاک بین کفشکها یا لقمه ها با کاسه باعث کاهش حرکت و یا توقف اتومبیل می شود . در شکل (۲ـ۱) مکانیزم ترمز چهارچرخ را که از نوع کاسه ای است ، نشان داده شده است .

شکل (۲ـ۲) مجموعه کاسه ترمز را اطراف کفشکها نشان می دهد . کفشکهای ترمز با یک ماده آسبست که می تواند در مقابل گرما مقاومت کند و اثر خوبی در مقابل کشش داشته باشد لنت کوبی می شود . موقعی که کفشکها به کاسه ترمز یا دیسک نیرو وارد می کنند ، گرما و کشش در آن زیاد می شود . در طول یک ترمز شدید کفشکها ممکن است با یک فشارPsi 1000 به کاسه یا دیسک فشرده شوند . وقتی که اصطکاک یا فشار افزایش می یابد ، یک کشش اصطکاکی قوی روی کاسه ترمز یا دیسک ایجاد می‌شود و یک اثر ترمزی قوی روی چرخها نتیجه می گردد .

همچنین یک مقدار زیادی از گرما بوسیلة اثر اصطکاک ایجاد می گردد . کاسه دیسک و کفشکها گرم می شوند . نهایتاً ممکن است درجه حرارت به ۵۰۰ درجه فارنهایت یا ۲۶۰ درجه سانتی گراد برسد . این گرما به طرق مختلف به کاسه یا دیسک منتقل می شود . بعضی کاسه های ترمز پره های خنک کننده دارند که یک سطح اضافی خنک کننده که گرما را بطور آسانتر به هوا منتقل کنند بوجود می آورند . حرارت های زیاد برای ترمزها خوب نیست زیرا حرارت لنت ممکن است آن را ذغال کند. بنابراین اثر ترمزی کم خواهد شد . در یعضی اتومبیلهای مسابقه ای از لنتهای آسبستی فلزی استفاده کرده اند . این ترمزها یک سری از بالشتک های فلزی که به کفشکهای ترمز وصل شدند ، دارند (شکل ۲-۳) این ترمزها می توانند درمقابل کارکرد ترمز و همچنین درجه حرارتهای بالا مقاومت بیشتری داشته باشند و تمایل کمتری به حالت (Fade) یا کم شدن دارند.

در ترمزهای دیسکی بعلت اینکه دیسک خنک می شود ، حالت Fade کمتری وجود دارد . بطور مثال در شکل (۲-۴) یک دریچة تهویه هوا یا پره های خنک کن برای کمک به انتقال حرارت وجود دارد . توجه کنید که فقط یک قسمت کوچک از دیسک در تماس با لقمه ها می باشد .

۲ـ۲ـ ترمزهای مکانیکی


ترمزهای مکانیکی کمتر برای ترمز گرفتن یا متوقف کردن اتومبیل بکار می رود . ترمزهای مکانیکی از سیمهائی که پدال را به کفشک ترمز متصل می کند تشکیل شده اند . شکل (۲-۵) یک سیستم ترمز چهارچرخ مکانیکی را نشان می دهد . وقتی روی پدال ترمز فشار وارد می کنیم ، سیمهای ترمز که به کفشک ترمز متصل است کشیده می شود . کفشک ترمز مرکب است از یک اهرم خارج از مرکز که وقتی بکار انداخته می شود ، یک انتهای کفشک ترمز را به بیرون هل می دهد . انتهای دیگر کفشک ترمز به سطح پشتی ترمز توسط یک خار کوچک تماس دارد .

۲-۳ اصول هیدرولیک

از آنجائی که اکثر ترمزها بصورت هیدرولیکی کار می کنند . ما هم بطور خلاصه اصول هیدرولیک و طرز عملکرد آن را مختصراً مرور میکنیم . همانطور که می دانیم ، سیال قابل تراکم نیست . بنابراین فشار روی سیال به آن نیرو وارد می کند و آن را مجبور میکند که توسط یک لوله به سیلندر برود ، جائی که آن می تواند به پیستون نیرو وارد کند تا پیستون حرکت کند . نیروئی که سیال ، پیستون را در سیلندر بکار می اندازد متناسب با اندازه پیستونها است ، مثلاً فشار Psi 100 یه سطح پیستون ۱ اینچ مربعی ، ۱۰۰ پوند نیرو وارد می کند و یا به سطح پیستون ۵/۰ اینچ مربعی ، ۵۰ پوند نیرو وارد می کند .                  F=P.A

2-4کاربرد ترمز هیدرولیکی

ترمزهای نوع هیدرولیکی ، از فشار هیدرولیکی سیال برای نیرو وارد کردن به کفشکها استفاده می کنند و قسمت بیرونی کفشک را به کاسه ترمز یا دیسک نزدیک می کنند . عملاً حرکت پدال ترمز به پیستون نیرو وارد می کند تا در سیلندر اصلی حرکت کند . این حرکت به سیال جلوی پیستون نیرو واردمی کند و این فشار سیال خط به سیلندر چرخها منتقل می شود . در نوع کاسه ای هر سیلندر چرخ دو پیستون دارد . هر پیستون به یک کفشک توسط پین اتصال متصل می شود . بنابراین ، موقعی که سیال به سیلندر چرخها فشار وارد می کند ، دو پیستون سیلندر چرخ بطرف بیرون رانده می شود . این حرکت بطرف بیرون باعث می شود که کفشکهای ترمز بطرف خارج حرکت کنند و با کاسه ترمز تماس پیدا نمایند .

در شکل (۲-۷) توجه کنید که اندازه های پیستون و فشارها بطور مثال داده شده است . سطح پیستون سیلندر اصلی in2 8/0 می باشد . یک نیروی ۸۰۰ پوندی پیستون را بکار می اندازد . این یک فشار psi 1000 به سیستم می دهد .

این فشار درچرخهای عقب نیروی ۷۰۰ پوندی روی هر پیستون ایجاد می کند که سطح پیستونهاin2 7/0 می باشد . در چرخهای جلو سطح پیستون in2 9/0 می باشد . بنابراین فشار ۹۰۰ پوند پیستون را برای حرکت کفشکهای ترمز جلو بکار می اندازد .

پیستونها در چرخهای جلو معمولاً بزرگتر هستند . زیرا موقعی که ترمز گرفته می شود مقدار نیروی حرکت آنی جلوی اتومبیل بیشتر از وزن روی چرخهای جلو می شود . بنابراین یک ترمز قویتر در چرخهای جلو لازم می باشد تا فعالیت ترمز متعادل شود .

۲-۵ سیستم ترمز دوبل :

در اتومبیلهای مدل پائینتر سیلندر اصلی فقط یک پیستون را شامل می شود و حرکت آن سیال در هر ۴ سیلندر چرخ نیرو وارد می کند . در سالهای اخیر ، سیستم هیدرولیکی به دو بخش تقسیم شده است یک قسمت در جلو و یک قسمت در عقب ( شکل۲-۸) باین ترتیب ، اگر یک قسمت موفق نشود وظیفة خود را انجام دهد ، یا اینکه نشتی پیدا کند ، قسمت دیگر هنوز عمل ترمز را انجام خواهد داد . همچنین این سیستم یک چراغ اخطار دارد که وقتی یک قسمت از کار افتاد این چراغ اخطار روشن می شود .

 ۲-۶ سیلندر اصلی

در سیستمهای قدیمی ترمز ، سیلندر اصلی یک پیستون داشت . در سیستم ترمز دوبل ، سیلندر اصلی آن دو پیستون دارد که پشت سرهم قرار دارد . کارکرد هر دو سیستم مشابه است . اما در سیستم دوبل دو قسمت مجزا دارد که مستقلاً کار می کنند . پیستونهای سیلندر اصلی به پدال ترمز اتصال پیدا کرده اند . فشار روی پدال ترمز بوسیله ترتیب اهرمها چندین برابر می شود برای مثال در اهرم بندی نشان داده شده در شکل (۲-۹) یک فشار ۱۰۰ پوندی روی پدال ترمز ، یک فشار ۷۵۰ پوندی روی پیستون تولید می کند .


موقعی که پیستون در سیلندر اصلی حرکت می کند و از مقابل سوراخ جبران کننده عبور می کند ، این سیال جلوی پیستون را حبس می کند فشار بسرعت بالا می رود و به سیال نیرو وارد می شود تا از خط ترمز به سیلندر چرخها منتقل شود این عمل در شکل (۲-۱۰) نشان داده شده است .    ۲-۷ سیلندر چرخها

۲-۸ عمل خود انرژی زائی(Self- energizing Action)

موقعی که ترمزها عمل می کنند ، (مثل شکل ۲-۱۰) ، سییلندر چرخ کفشک ترمز را بطرف کاسه در حال گردش هل می دهد . کفشک اولیه ( کفشکی که در جلوی اتومبیل واقع شده است ) با کاسه تماس پیدا می کند . اصطکاک بین کفشک اولیه به قطعات ترمز نیرو وارد می کند که این نیرو برای تغییر جهت دادن به کاسه در حال گردش می باشد .

البته در این عمل ، فقط مقدار کمی تغییر جهت می دهد زیرا خار کوچک مقدار محدودی اجازه حرکت می دهد . به شکل (۲-۱۲) نگاه کنید این حرکت بطور محکمتر و شدیدتر برخلاف جهت گردش کاسه ترمز به کفشک ابتدائی نیرو وارد می کند و عمل ترمز را افزایش بیشتری می دهد ( شکل ۲-۱۳) در همین لحظه ، پیچ تنظیم و پین مجبور به حرکت می شوند همانگونه که کفشک اولیه حرکت کرده است .

در شکل (۲-۱۴) ما می بینیم که چگونه این پیچ تنظیم کننده جهت حرکت کاسه را تغییر می دهد . بنابراین کفشک دومی بوسیله سیلندر چرخ به کاسه نیرو وارد می کند و جهت پیچ تنظیم کننده را تغییر می دهد . نتیجتاً ، کفشک دومی تقریباً دو برابر کفشک اولی اثر ترمزی ایجاد می کند . به همین دلیل در کفشک دومی لنت بزرگتر است .(شکل ۲-۱۴)

همیشه کفشک اولی با لنت کوچکتر ، بطرف جلوی اتومبیل است و کفشک ثانویه با لنت بزرگتر در طرف عقب اتومبیل می باشد .

 

2-9 حرکت بازگشتی Return strock:

در حرکت بازگشتی ، کشش فنر اتصالات ترمز و فشار پیستون سیلندر اصلی به پیستون نیرو وارد می کنند تا به عقب سیلندرش حرکت کند . اکنون سیال از سیلندر چرخ به سیلندر اصلی جریان پیدا می کند . همانطور که در شکل (۲-۱۵) نشان داده شده است فنرهای کششی به کفشک ترمز نیرو وارد می کند تا از کاسه دور شوند و بنابراین پیستون سیلندر چرخ بطرف داخل هل داده میشود . همچنین سیال از سیلندر چرخ به سیلندر اصلی برگشت می یابد .( همانطوریکه بوسیله پیکان نشان داده شده است ) . اما مقداری از فشار در خط ترمز توسط شیر کنترل که در انتهای سیلندر اصلی است محبوس می شود .(شکل۲-۱۰ را ببینید )

 حبوس شدن فشار ، سوپاپ کنترل بسته می شود و مقداری فشار در خط ترمز و سیلندر چرخ باقی می ماند . این فشار بجهت جلوگیری از نشتی سیال و احتمالاً هواگیری سیستم بکار گرفته می شود .

 

۲-۱۰ چراغ اخطار (Warning Light)

در سیستم ترمز دوبل ، یک شیر فشار متغیر برای بکار انداختن سوئیچ چراغ خطار بکار می رود . ( شکل۲-۱۶) . این شیر ، یک پیستون دارد که وقتی ترمز های جلو و عقب بطور عادی کار می کنند .

در مرکز قرار دارد ، اما اگر یک قسمت خراب شود ، فشار کمتری روی یک طرف پیستون موجود خواهد بود . این اختلاف فشار ، پیستون را حرکت می دهد و سبب می شود که پلانجر سوئیچ بطرف بالا حرکت کند .(شکل ۲-۱۷) این عمل کنتاکتها را می بندد تا اینکه لامپ اخطار روی داشبورد روشن شود . بدین ترتیب راننده می فهمد که یکی از ترمزهای عقب یا جلو از کار افتاده است .

           ۲-۱۱ ترمزهائی که خودشان تنظیم می شوند ( نوع کاسه ای) Self- adgusting Brakes   اکثر ترمزهای اتومبیل امروزی یک مکانیزم خود تنظیمی دارند که وقتی لنت پوسیده و سائیده می شود ، بطور اتوماتیک آن را تنظیم می کند .شکل (۲-۱۸) یک نوع مخصوص آن را نشان می دهد . تنظیم فقط موقعی که اتفاق می افتد که ترمزها در موقع حرکت اتومبیل بسمت عقب بکار برده شوند . در این حالت فقط زمانی که لنت ترمز سائیده شده باشد و احتیاج به تنظیم دارد ، یک تنظیم خودکار انجام می گردد .

 در حال حرکت اتومبیل به عقب ، وقتی ترمزها گرفته می شوند ، اصطکاک بین کفشک اولیه و کاسه ترمز یک نیرو به کفشک اولیه وارد می کنند ، که این نیرو خلاف جهت پیچ اتصال است . سپس فشار هیدرولیکی از سیلندر به انتهای فوقانی کفشک ثانویه نبرو وارد می کند و آن را از پین اتصال دور می کند و پائین می آورد . (شکل ۲-۱۹)

این عمل سبب می شود که اهرم تنظیم کننده روی کفشک ثانویه لولا کند . بدین ترتیب انتهای پائینی اهرم روی پیچ اتصال برخلاف چرخک زنجیری نیرو وارد می‌کند. اگر لنتهای ترمز بحد کافی پوسیدگی داشته باشند ، پیچ تنظیم کننده ممکن است تا آخر بپیچد . این عمل انتهای پائینی کفشکهای ترمز را چند هزارم اینچ حرکت می دهد تا پوسیدگی لنت متعادل شود .

 در بعضی اتومبیلها مکانیزم خود تنظیمی موقعی که ترمز کردن در حال حرکت بطرف جلو است صورت می گیرد .

 

۲-۱۲ ترمزهای دیسکی :

120,000 ریال – خرید
 

تمام مقالات و پایان نامه و پروژه ها به صورت فایل دنلودی می باشند و شما به محض پرداخت آنلاین مبلغ همان لحظه قادر به دریافت فایل خواهید بود. این عملیات کاملاً خودکار بوده و توسط سیستم انجام می پذیرد.

 جهت پرداخت مبلغ شما به درگاه پرداخت یکی از بانک ها منتقل خواهید شد، برای پرداخت آنلاین از درگاه بانک این بانک ها، حتماً نیاز نیست که شما شماره کارت همان بانک را داشته باشید و بلکه شما میتوانید از طریق همه کارت های عضو شبکه بانکی، مبلغ  را پرداخت نمایید. 

 

 

مطالب پیشنهادی: برای ثبت نظر خود کلیک کنید ...

براي قرار دادن بنر خود در اين مکان کليک کنيد
به راهنمایی نیاز دارید؟ کلیک کنید


جستجو پیشرفته مقالات و پروژه

سبد خرید

  • سبد خریدتان خالی است.

دسته ها

آخرین بروز رسانی

    دوشنبه, ۳ مهر , ۱۳۹۶

اولین پایگاه اینترنتی اشتراک و فروش فایلهای دیجیتال ایران
wpdesign Group طراحی و پشتیبانی سایت توسط دیجیتال ایران digitaliran.ir صورت گرفته است
تمامی حقوق برایbankmaghale.irمحفوظ می باشد.