مقاله بررسی خواص مقدماتی و رفتار فرایندهای شاخه ای گالتون -واتسون


دنلود مقاله و پروژه و پایان نامه دانشجوئی

مقاله بررسی خواص مقدماتی و رفتار فرایندهای شاخه ای گالتون -واتسون مربوطه  به صورت فایل ورد  word و قابل ویرایش می باشد و دارای ۴۷  صفحه است . بلافاصله بعد از پرداخت و خرید لینک دانلود مقاله بررسی خواص مقدماتی و رفتار فرایندهای شاخه ای گالتون -واتسون نمایش داده می شود، علاوه بر آن لینک مقاله مربوطه به ایمیل شما نیز ارسال می گردد

 فهرست

چکیده. ۱

مقدمه. ۲

فصل اول:فرآیندهای شاخه ای گالتون-واتسون استاندارد ۴

۱-۱- مروری بر تعاریف و قضایای مقدماتی… ۵

۱-۲- فرایندهای شاخه ای گالتون – واتسون استاندارد : ۱۰

فصل دوم:فرآیند های شاخه ای گالتون – واتسون دوجنسی (GWBP) تعاریف و خصوصیات اصلی    ۱۴

۲-۱-فرآیند های شاخه ای گالتون – واتسون دو جنسی (GWBP). 15

2-2- توابع خانواده زیر جمعی… ۱۷

۲-۳- فرآیند شاخه ای زوجهای هم خانواده (SMOBP). 18

فصل سوم: احتمالات انقراض…. ۱۹

۳-۱- انقراض در فرایندهایی که تابع خانوادة زبرجمعی دارند.. ۲۰

۳-۲- معیارهای کلی انقراض…. ۲۳

فصل چهارم: میزان هندسی رشد در فرآیند های شاخه ای وابسته به حجم جامعه. ۲۹

۴-۱-زمانهای فرآیند و مارتینگل… ۳۱

۴-۲-شروط لازم برای همگرایی  در … ۳۳

۴-۳- شروط کافی برای همگرایی  در …. ۳۶

فهرست منابع.. ۴۰

فهرست منابع

۱-کارین، ساموئل و تیلور، هوودار دام، نخستین درس در فرآیندهای تصادفی، ترجمه دکتر علی اکبر عالم زاده، دکتر عین الله پاشا، مؤسسه نشر علم نوین، ۱۳۷۳

۲-بارتل، ربرت جی، اصول آنالیز حقیقی، ترجمة جعقر زعفرانی، مرکز نثر دانشگاهی، ۱۳۶۶

۳-رانداس بات، نظریه احتمال مدرن، ترجمه دکتر بزرگ نیا و دکتر علامتساز، مانی، ۱۳۵۷

۴-Asmussen, s.(1980) on some two-sex population models. Ann. prob. 8,727-744.

5-Daley, D.J,(1968a) Extinction conditions for certain bisexual Gelton-watson branching processes.Z. wahrsheinlichkeitsth.

9,315-322

6-Daley, D.J.(1968) stochastically monotone marlivchails.

Z.wahrscheinlichleitsth. 10,305-317

7-Hull, D.M.(1982) Anecessary condition for extinction in those bisexual Galton- watson branching processes governed by superadditive mating functions. J.Appl.prob.19,847-850

8-sevastyan, B,A, And zubkov,A-M(1971) controlled branching processes. Theory prob, Appl.19,14-24

9-Fujimagari, T.(1976) controlled Galton- watson process and its asymptotic behavior. jodai mathe. sem. rep.27,11-18

10-klebaner,F,C(1983)population- size- dependent branching process whith linear rate of growth. J.Appl.prob.20,219-250

10-knopp,k(1998) Theory and Applications of Infinite servies. Blackie&sons, London.

12-labrovski, V,A,(1972) A limit theorem for generalized bravching process depending on the size of the population. theory prob. Appl.17,72-85

13-Hepfner, R.(1983) in some classes of population-size- dependent Galton-watson processes submitted to J.Appl.prob

14-Karr,A.”probibility”, springer- varlay, New york, 1993

15-leave, m.”probability theroy , II,”springer-verlag, newyork 1978.

16-knopp, k,Theory and applications of infinite series., Blacki &sons, London, 1928.

17-Gonzalez, M., molina, M., “in the limit behavior of a supperaddititive bisexual Galton- watson branching process.”J.Appl prob.Data, 1998,33,960.

چکیده

هدف از این تحقیق بررسی خصوصیات اصلی و رفتار فرآیندهای شاخه ای گالتون- واتسون دو جنسی با تابع خانوادة زیر جمعی و احتمالات انقراض در چنین فرآیندهایی است.

مدلی از فرآیند شاخه ای دو جنسی  مفروض است به طوری که توزیع زاد و ولد به اندازه جمعیت بستگی دارد. همچنین حالت خاص را در نظر می گیریم که در آن نرخ رشد جمعیت  (میانگین توزیع زاد و ولد)، وقتی  به  میل می کند .

برای این نوع از فرآیندهای شاخه ای گالتون- واتسون دوجنسی  شرط لازم برای همگرایی فرآیند  در  و ارائه می گردد.

همچنین شرط کافی برای همگرائی  در  به دست خواهد آمد.

 مقدمه

تا کنون مطالعات زیادی روی نحوه رشد جمعیت و احتمال انقراض در فرآیندهای شاخه ای گالتون- واتسون استاندارد انجام شده است. در حالت دوجنسی (که مدل مناسبی برای جامعة انسانی است) تعمیم این قضایا لازم به نظر می رسد. زمانی که ما چگونگی رشد جمعیت را بدانیم، می توانیم زمان انقراض رفتار مجانبی رشد جامعه را بررسی کنیم و مدل مناسبی برای آن بدست آوریم.

فرآیندهای شاخه ای گالتون-واتسون دو جنسی اولین بار توسط دالی در سال ۱۹۶۸ و پس از آن توسط آسمونس در سال ۱۹۸۰ تعریف و بررسی شد. دالی نشان داد که فرآیند شاخه ای گالتون- واتسون دو جنسی  یک زنجیر مارکوف با ماتریس احتمال تغییر وضعیت یک مرحله ای با فضای حالت صحیح و نامنفی است.

در نظریه فرآیندهای شاخه ای گالتون- واتسون استاندارد می دانیم که فرآیند با احتمال ۱ منقرض می شود اگر و فقط اگر میانگین تولید مثل برای هر فرد دلخواه کمتر از ۱ باشد.

حال ما می خواهیم بدانیم «آیا قوانین متشابهی برای احتمالات انقراض در فرآیندهای شاخه ای گالتون- واتسون دو جنسی وجود دارد؟»

در سال ۱۹۶۸ دالی یک شرط لازم و کافی برای احتمال انقراض ۱ برای فرآیندهای با توابع خانوادة خاص به دست آورد.

هدف از این تحقیق معرفی فرآیندهای شاخه ای گالتون- واتسون دوجنسی و فرآیند زوجهای هم خانواده و بیان ویژگی های آنها و مقایسه احتمالات انقراض در چنین فرآیندهایی است ابتدا شروط انقراض در فرآیندهای شاخه ای گالتون- واتسون دوجنسی را بررسی می کنیم سپس قوانین کلی انقراض و در نهایت گشتاورهای فرآیند و برخی خواص آنها را مورد بررسی قرار می دهیم.

فصل اول

فرآیندهای شاخه ای گالتون-واتسون استاندارد

 ۱-۱-مروری بر تعاریف و قضایای مقدماتی

۱-۲-فرآیندهای شاخه ای گالتون-واتسون استاندارد

 مقدمه

هدف از این فصل ارائه مطالب کلی و مورد نیاز برای مطالعة فصل های بعدی می باشد در بخش اول برخی از تعاریف و قضایای مقدماتی را که بعداً به آنها نیاز خواهیم داشت بررسی می کنیم و در بخش دوم فرآیندهای شاخه ای گالتون-واتسون استاندارد و برخی خواص عمومی آن را مورد مطالعه قرار می دهیم.

 ۱-۱- مروری بر تعاریف و قضایای مقدماتی

تعریف ۱-۱-۱: یک فرآیند تصادفی عبارتست از گرد آیه ای مانند  از متغیرهای تصادفی ، که در یک فضای احتمال مشترک و با مقادیر در فضای حالت S تعریف می‌شوند. T زیر مجموعه‌ای از  است و معمولاً به عنوان مجموعه پارامتر زمان تعبیر می‌شود .

هرگاه  فرآیند را فرآیند با زمان پیوسته می نامند و هرگاه  فرآیند را فرآیند با زمان گسسته نامند.

معمولاً اگر  فرآیند را به صورت  نمایش می دهند.

فرآیند مورد نظر ما در این رساله فرآیند با زمان گسسته است.

تعریف ۱-۱-۲: فرض کنید  فرآیند تصادفی با زمان گسسته و فضای حالت شمارای S باشد گوئیم این فرآیند یک زنجیر مارکوف است اگر به ازای هر  و هر  و y از حالتها، رابطة زیر برقرار باشد:

          (۱-۱)

یعنی فقط اطلاع از حالت فرآیند در مرحلة n برای تعیین توزیع حالت فرآیند در مرحلة  کفایت می کند و اطلاعات قبل از آن مؤثر نخواهد بود.

احتمال شرطی  را احتمال انتقال یک مرحله ای از x در  مرحله n ام به y در مرحله ام می نامیم. احتمالات انتقال را با  نشان می‌دهیم بنابراین:

 ماتریس  را که درایه های آن احتمالهای انتقال یک مرحله است ماتریس احتمال انتقال یک مرحله ای می‌نامیم.

سطر x ام این ماتریس احتمالهای انتقال از x به یکی از حالتهای  زنجیر در یک مرحله است، اگر احتمالات انتقال یک مرحله ای از متغیر زمان مستقل باشد گوئیم فرآیند مارکوف دارای احتمالات انتقال مانا می باشد.

تعریف ۱-۱-۳: فرض کنید  دنباله ای از متغیرهای تصادفی تعریف شده بر فضای احتمال  باشد. همچنین  دنباله ای از  میدانهای  باشد که برای هر n داشته باشیم :

 است اگر:

 یک زیر مارتینگل نسبت به  است اگر :

آ.به ازاء هر n.،  روی  اندازه پذیر باشد.

ب : به ازاء هر n ،

ج : به ازاء هر n ،

هر گاه  یک زیر مارتینگل باشد ، آنگاه  یک زیرمارتینگل است .

هر گاه  و  یک زیر مارتینگل باشند آنگاه  یک مارتینگل نسبت به  می باشد .

تعریف ۱-۱-۴ : فرض می کنیم  دنباله ای از متغیرهای تصادفی باشند ،‌دنباله  همگرای a.s. به متغیر تصادفی X است اگر :

 تعریف ۱-۱-۵ : فرض کنیم  دنباله ای از متغیرهای تصادفی باشد . گوئیم این دنباله در  به متغیر تصادفی X همگراست هر گاه :

  تعریف ۱-۱-۶ : فرض می کنیم  دنباله ای از متغیرهای تصادفی باشد دنبالة  همگرا در احتمال به متغیر تصادفی X است . هر گاه بازاء هر

 لم ۱-۱-۱ : فرض کنید  متغیرهای تصادفی در یک فضای احتمال باشند ، اگر وقتی  همگرا در  به X باشد‌ ، آنگاه  همگرا a.s. به X است .

لم ۱-۱-۲ : فرض می کنیم  دنباله ای از متغیرهای تصادفی باشد . اگر  وقتی  ، همگرایی a.s. به X باشد آنگاه  همگرا در احتمال به X است .

لم ۱-۱-۳ : (قضیة همگرائی مارتینگل ها) : آ : فرض کنید  یک زیر مارتینگل صادق در :

 باشد . در این صورت یک متغیر تصادفی متناهی مانند  X وجود دارد که  با احتمال یک به  همگراست یعنی

           (۱-۲)

لم ۱-۱-۴ : (نامساوی جانسن) : آ : متغیر تصادفی X مفروض است . اگر g(x) تابعی مقعر باشد آنگاه :

 ب : متغیر تصادفی X مفروض است . اگر g(x) تابعی محدب باشد آنگاه :

 لم ۱-۱-۵ : به فرض f انتگرالپذیر و نزولی بر   باشد ،  و  در این صورت :

اگر و فقط اگر :

 لم ۱-۱-۶ : فرض کنید f تابع نزولی مثبت باشد . در این صورت برای هر  و  داریم :

 لم ۱-۱-۷ : فرض کنید f(x) یک تابع مثبت و نزولی بر  باشد بطوریکه xf(x) صعودی باشد و  . همچنین فرض کنید دنباله ای از اعداد مثبت باشد . اگر به ازاء یک  و هر  داشته باشیم .

 آنگاه : آ :  موجود است .

ب: ای که فقط به f و m بستگی دارد موجود است به طوریکه اگر  آنگاه  .

 ۱-۲- فرایندهای شاخه ای گالتون – واتسون استاندارد :

45,000 ریال – خرید

 تمام مقالات و پایان نامه و پروژه ها به صورت فایل دنلودی می باشند و شما به محض پرداخت آنلاین مبلغ همان لحظه قادر به دریافت فایل خواهید بود. این عملیات کاملاً خودکار بوده و توسط سیستم انجام می پذیرد.

 جهت پرداخت مبلغ شما به درگاه پرداخت یکی از بانک ها منتقل خواهید شد، برای پرداخت آنلاین از درگاه بانک این بانک ها، حتماً نیاز نیست که شما شماره کارت همان بانک را داشته باشید و بلکه شما میتوانید از طریق همه کارت های عضو شبکه بانکی، مبلغ  را پرداخت نمایید. 

 

مطالب پیشنهادی:
برچسب ها : , , , , , , , , ,
برای ثبت نظر خود کلیک کنید ...

براي قرار دادن بنر خود در اين مکان کليک کنيد
به راهنمایی نیاز دارید؟ کلیک کنید


جستجو پیشرفته مقالات و پروژه

سبد خرید

  • سبد خریدتان خالی است.

دسته ها

آخرین بروز رسانی

    چهارشنبه, ۱۷ آذر , ۱۳۹۵

اولین پایگاه اینترنتی اشتراک و فروش فایلهای دیجیتال ایران
wpdesign Group طراحی و پشتیبانی سایت توسط دیجیتال ایران digitaliran.ir صورت گرفته است
تمامی حقوق برایdjkalaa.irمحفوظ می باشد.